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Abstract: Applications of the concepts of fractal theory to characterize rainfall have been on the rise
everyday. Studies conducted thus far have vielded positive evidence on the fractal nature of rainfall and
also revealed the insufficiency of mono-fractal approaches and the necessity of multi-fractal approaches.
The assumption behind multi-fractal approaches for rainfail is that the variability of the rainfall process
coutd be directly modeled as & stochastic (or random) turbulent cascade process, since such stochastic
cascade processes were found to generically vield multi-fractals. This study investigates the suitability of
stochastic multi-fractal approaches (or techniques) for rainfall characterization. The investigation centers
on the question whether multi-fractals result only from stochastic {cascade) processes, or could other types
of processes also vield multi-fractals. A few commonly used multi-fractal methods are employed to four
different tvpes of data sets: (1) artificial stochastic data; (2} artificiai chactic data; (3) real rainfal! data from
a subtropical climatic region (Leaf River basin, USA); and (4) real rainfall data from an equatorial climatic
region {Singapore}. The results reveal that the commaonly employed multi-fractal techniques might provide
nositive evidence of multi-fractals not only in stochastic processes but also in chaotic processes, suggesting

that the outcomes of the existing multi-fractal techniques must be carefully interpreted. This indicates that a
thorough investigation of the dynamical behavior of the rainfall process is necessary to identity the suitable
type of fractal approach for rainfail. The possibie existence of chaotic behavior in rainfall seems 1o suggest
an alternative; chaotic multi-fractal appreach; for rainfali characterization.
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variability of the rainfall process could be
directly modeled as a stochastic turbulent

1. INTRODUCTION

Recent vears have witnessed a large number of
studies investigating the presence of fractal
behavior in rainfall and the possibility of
transformation of rainfall data from one scale to
apother [e.g. Lovejoy and Mandelbrot, 1983;
Schertzer and Lovejoy, 1987; Tessier et al.,
1996; Menabde et al., 1997]. Such studies have,
on one hand, led to the development and
refinement of various fechniques to identify if
rainfall process exhibits fractal behavior, and, on
the other hand, revealed the msufficiency of
mono-fractal approaches and the necessity of
mutti-fractal ones. The multi-fractal approaches
originated  in  turbulence, as  turbulence
phenomenon was found governed by stochastic
(or random) cascade processes [e.g. Mandelbrot,
1974], The theoretical basis of multi-fractal
approaches for rainfall is the assumption that the

cascade process [e.g. Schertzer and Lovejoy,
1987]. This assumption is supporied by the
empirical evidence about the fractal properties of
rainfall and the analogy with the stochastic
cascade models in fully developed wrbulence.
Even though attempts have been made to justify
this assumption, the question whether or not
rainfall process is cascade remains unanswered
essentially due to the pure phenomenclogical
nature of the stochastic (cascade) approaches
[e.g. Menabde et al., 1997].

Having said that, there are at least three possible
reasons {or the popularity of the stochastic multi-
fractal appreaches for rainfall. They are: {13 our
belief that the seemingly irregular ramntall
process is dominantly influenced by a large
number of variables; (2) the assumption that the
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distribution of eddies in the (cascade) rainfali
process is stochastic; and (3) the observation of
stochastic cascade processes generically yielding
multi-fractals. Though the above seem to justify
the use of such approaches for rainfall, they are
neither necessary nor sufficient, because: (1)
rainfall process may be chaotic {e.g. Rodriguez-
iturbe et al.. 1989; Sivakumar ¢t al., 1999]; (2}
distribution  of eddies may follow chaotic
behavior [Sivakumar et al, 2001]; and {(3)
processes  that yield multi-fractals may not
necessarily be stochastic cascades. In view of the
above, the present study attempts to investigate
the suitability of stochastic muiti-fractal
approaches for rainfall characterization by
testing whether multi-fractals resuit only from
stochastic (cascade) processes, or could other
tvpes of processes, such as chaotic, also yield
multi-fractals. This is achieved by employing
some of the commonly used multi-fractal
techniques to four data sets generated by
processes with differing dynamical properties.
Among these, two are artiftcially generated
{whose characteristics are known a priori)y. (1)
stochastic; and (2) chaotic, and the other two are
real rainfall series observed in two different
climatic regions {whose characteristics are not

known a prioef): (1) a subtropical climatic region
O & B T A N o )

presence of a power-law behavior in the

spectrum given by

- . o 1 F
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where f is the frequency and f is the spectral

exponent, indicates the absence of characteristic
time scale, and thus a multi-fractal behavior.

2.2 Probabitity Distribution Function

The empirical probability distribution function
{(PDF) of a time series describes the fractal
properties of the intensity fluctuations at a given
scale, generally the scale corresponding to the
measurement resolution. I the series is
characterized by a hyperbolic intermittency [e.g.
Lovejoy and Mandeibrot, 1983], which may be
considered as a feature of (multi-) fractal
behavior, then for high intensity threshold values
x, the tail of the probability distribution of the
series A follows a power law form:

FriX > x) o0y (2)
where gy is the probability exponent. In general,
gn < | indicates a mono-fractal behavior,

whereas a multi-fractal behavior is characterized
by a value of g, > | [e.g. Tessier et al., 1996].

{L&.,a,i Vet %_‘“aaiﬁ, }v’{gaoioaippi, g.;urx}, ard K—} aft
gquaterial climatic region (Singapore). Three
different techniques: (1) the power spectrum; (2)
the empirical probability distribution function;
and (3% the statistical moment scaling, are
empioyed.

2, MULTE-FRACTAL IDENTIFICATION

Before applying any specific  mulii-fractal
technique to a time series, a common practice is
10 obtain some information about the general
fractal behavior using two standard statistical
descriptions: {1} the power spectrum; and {2) the
empirical probability distribution function. These
two methods are, therefore, emploved in the
nresent study. In addition to these, the statistical
moment scaling method, one of the methods
specifically  designed  for  identifying multi-
fractals, is employed. These methods are briefly
described next,

2.1 Power Spectrum

The power spectrum, E{f). is usefu! for studying
the oscillations of a signal. In general, the

-resclution. The ratio.of the maximumscale . af the e,
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1.3 Statistical Moment Scaling Function

In the statistical moment scaling method [e.g.
Over and Gupla, 1994], the time series is divided
into non-overlapping intervals of a certain time

field to this interval is termed the “scale ratio,” A.
For different scale ratios, A, the average
intensity, &(4,4), in each interval, i, is computed
and raised to power g, and subsequently summed
to obtain the statistical moment, A4, g):

MA.q)=y e(A.0)

For a scaling field the moment, M(,q), relates to
the scale ratio, A, as

M(A,qy=A"" (4)
where g} may be regarded as a characteristic
function of the fractal behavior. In general, a
straight-line behavior in #g) versus ¢ plot is an
indication of mono-fractal behavior, whereas a
convex functicn indicates multi-fractal behavior,

(3}



3. DATA SETS STUDIED

The tremendous spatial and temporal variability
of rainfall is generally believed to be due to the
influence of a large number of dominant
variables and, therefore, rainfall process is
usually treated as a stochastic process. However,
it has recently been revealed that the apparently
complex rainfall behavier could alse be chaotic,
i.e. the process is influenced dominantly by only
a few nonlinear interdependent variables
sensitive to initial conditions [e.g. Rodriguez-
Iturbe et al., 1989; Sivakumar et al., 1999 and
2001]. In view of this, in order to achieve the
objective stated above, the three multi-fractal
techniques are employed [irst to data sets
generated from each of an artificial stochastic
and chaotic process, whose characteristics are
known ¢ priori, and then to two real rainfatl data
sets from a subtropical climatic region {(Leal
River basin, USA) and an equatorial climatic
region (Singapore), respectively. The results
achieved for the artificial data sets are used as a
reference frame to interpret the results achieved
for the rainfall data sets. A brief account of these
four data sets is presented below,

accurately predict the system in the short-term.
The artificial chaotic time series generated in the
present study is one of the simplest and well-
known chaotic series, the Henon map [Henon,
1976]. The Henon map given by:
Ker=a—X7+ 07,

=X &)
vields irregular solutions for many choices of o
and b When ¢ = 1.4 and & = 0.3, a typical
sequence of X will be chaotic.

from a
{Leaf

3.3 Rainfall Data
Climatic Region
Mississippi, USA).

Subtropical
River basin,

The rainfali data set considered in the present
study to represent the subtropical climatic
conditions is the daily rainfall series observed
over a period of 30 years (January 1963 -
December 1992) at the Leaf River basin, in the
State of Mississippi, USA. The data represents
the mean of the rainfall observed in the basin.
The mean annual precipitation in this basin is
about 1350 mm and rainfall is generally well
distributed throughout the year. March is the

wettest month with a mean rainfall of about 166

3T StovhasticData

in general, a stochastic process is one that is
influenced by a large number of dominant
variables. For such a process, the input
parameters are, in general, unknown or only

..some. statistical measures. of the parameters.are. ...

known and, therefore, even short-term
predictability is not guaranteed. In this study, the
artificial stochastic data set is generated using the
random number generation function

X = rand( ) 3

3.2. Chaotic Data

A chaotic system is one that looks irregular or
erratic but is strictly deterministic and influenced
only by a few dominant nonlinear interdependent
variables with sensitive dependence on initial
conditions. The immediate consequence of
sensitive dependence on initial conditicns in any
system is the impossibility of making perfect
predictions or even mediocre predictions
sufficiently far into the future. However, the
existence of determinism makes it possible to
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mm and October is the driest with a mean
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3.4 Rainiall Data f{rom an Eguatorial

Climatic Region (Singapore)}

Daily rainfall data observed over a pericd of 30 .

vears {January 1963 — December 1992) in the
istand of Singapore is considered to represent the
rainfall data from an equatorial climatic region.
The mean annual rainfall in Singapore is about
2700 mm. Rainfall in this island occurs during
two  main  rainfall  seasons: the Northeast
monsoon season from late November to March,
and the Souwthwest monsoon seasen from late
May to September. The NMortheast monsoon
season is the wetter season accounting for about
48% of the annual rainfall, whereas about 36%
of the annual rainfall occurs daring the
Sputhwest monsoon season. December is usualiy
the wettest month with an average rainfail of
about 280 mm, while July has the lowest average
rainfull of about 160 mm. The rainfall data
considered in this study represents the mean of
the rainfall  observed over the island
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Figure 1. Time Series Plot for (a) Stochastic data; (b) Chaotic data;
(c) Leaf River rainfall data; and (d) Singapore rainfall data.

Figures 1{a) to i{d) show sample time series
plots of the above four data sets, respectively,

data sets are presented in Table 1.

Table 1. Important Statistics of the tour different
data sefs.

Stoch- | Chao- | Leaf | Singa
Statistic astic tic River | -pore
Data Data Rain- | Rain-
fall fall
Data Data
No. data | 10000 | 10000 | 10000 | 10000
Mean 0.50 0.26 3.86 617
St. dev. 0.29 0.72 10.08 | 11.36
Var. (.08 (.52 1017 | 133.6
Max. 0.9 1.27 | 2215 | 2628
Min. 0.0002 | -1.29 | 0.0 0.0
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4, RESULTS AND DISCUSSION

The spectral exponents, fJ, obtained for the four
data sets analyzed are presented in Table 2. As
can be seen, for all the four series f is less than
[, indicating the suitability of an unbounded
cascade model. It is interesting to note that the £
values obtalned for the rainfall series are wvery
gloge not only to the one obtained for the
stochastic series bui also for the chastic series
{all of which have # =~ 030). These resuits
indicate that the rainfall process, if found to
exhibit  multi-fractals, cannot  ablways  be
considered as stochastic cascade, as chaotic
cascade may also be possible.

4.2 Probability Distribution Function
For all the four data sets analyzed in the present

study, hyperbolic tall behaviors are observed
(Figures not shown). The wvalues of the



prebability exponents, gp,. obtained for the fowr
series are given in Table 2. The results indicate
that: {1) the g, values obtained for all the four
series are above 3.0; and (2) the exponents
obtained for the two rainfall series (3.79 and
3.30} are much different and lower than that
obtained for the stochastic and chaotic series.
Such results imply that: {1) a mono-fractal mode!
is not sufficient for modeling these sets; and (2)
the rainfall series may be modeled either/neither
as a stochastic or/nor as a chaotic process.

Table 2. Results of fractal analysis for four
different data sets.

characterization, by testing whether mulfi-
fractals result only from stochastic processes, or
even chaotic processes also yield muiti-fractals,
Three commenly used multi-fractal techniques
were emploved to four data sets, two artificially
generated and two real rainfalf series,

The spectral exponents, 4, obtained for the two
rajnfall series were found to be almost the same
as that for the stochastic and chaotic series (f =
0.30) and, therefore, there is no reason to
construc that the rainfall processes are only
stochastic cascades. Even though, algebraic tails
were observed in the probability distribution
functions for the two rainfall series, there is no

4.3 Statistical Moment Scaling Method

functions against ¢ for the four data sets. As can
be seen, for the stochastic series a straight-line
behavior of the {g) function is observed,
indicating the presence of mono-fractals,
Although the «(g) function for the chaotic series
locks like those of the stochastic series (i.e.
straight-line), this is true only for low values of
g. For high values of g, i.e. ¢ = 3.0, no consistent
behavior is cobserved, such as straight-line or
convex. The #g) functions for the two rainfall
series are convex curvatures, indicating that the
two series exhibit multi-fractals. However, there
is no evidence to support the use of stochastic
fractal approaches.

5. SUMMARY AND CONCLUSIONS

This study attempted to investigate the suitability
of stochastic multi-fractal approaches for rainfail
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evidence to interpret that they were the cutcomes
Stoch- | Chao- Leaf Singa- of stochastic cascades because: (1) the
Stat- astic tic River pore probability exponents for the two rainfall series
istic | Data Data | Rain- | Rain- (g = 3.79 and 3.30) are significantly different
fali fail than those for the stochastic series (g, = 12.8%
Data Diata and (2} even chaotic series yielded the same
value (g, = 12.5) for the exponent as that of the
stochastic series. The statistical moment scaling
B 0.30 0.33 0.30 033 functions, #g), for the two rainfall series were
4o 12.5 12.5 379 3.30 found convex, indicating the possible presence of
A{q) 1o 09-1.1 | 0.9-1.8 | 0.9-1.7 multi-fractals. However, there is no reason to
(strai- | (irregu ; (con- {con- construe that the two series were the ocutcomes of
ght lar vex VER stochastic cascades, asg the stochastic series did
HULY CULVE] | Curve] + curvej not exhibit a convex behavior in the g

function, but only a stmight-line behavior.

The results frem the present study. indicated that
the commonly employed multi-fractal methods
might provide positive {or negative) evidence of

stochastic  processes but  alse  in  chaotic
processes. These results imply that (1) the
outcomes of the existing stochastic multi-fractal
approaches fo rainfall must be carefully
interpreted; {2} 2 thorough investigation of the
behavior {stochastic or chaotic) of the rainfall
process is necessary o identify the suitable type
of multi-fractal approach. 1t is appropriate to
note that a recent study by Sivakwmar et al
{2001} on the rainfall data observed at the Leaf
River basin indicated that the distributions of
weights of rainfall data between different
resolutions exhibited chaotic behavior. Also,
studies have reperted convincing evidence
regarding the presence of chaotic behavior in
Singapore rainfall data {e.g. Sivakumar et al,
1999]. A possible implication of these may be
thet the chaotic approach can alse be a suitable
Tramework for ramfall characterization from a
scale-invariance point of ViEw,
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Figure 2. Statistical Moment Scaling Function for: (a) Stochastic data; (b} Chaotic data;
{¢) Leaf River rainfall data; and (d) Singapore rainfali data.
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